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Abstract

We study a one-sector stochastic optimal growth model where production is affected by a shock taking one of two
values. Such exogenous shock may enter multiplicatively or additively. A result is presented which provides sufficient
conditions to ensure that the attractor of the iterated function system (IFS) representing the optimal policy, is a general-
ized topological Cantor set. To indicate the role of the strict monotonicity condition on the IFS in this result, examples
of attractors, which are not of the Cantor type, are constructed with iterated function systems, whose maps are con-
tractions and satisfy a no overlap property.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper we provide a further generalization of the framework introduced by Mitra and Privileggi [11], where a
stochastic one-sector discounted optimal growth model with an iso-elastic utility function, and a Cobb–Douglas pro-
duction function affected by a multiplicative random exogenous shock taking one of two values, was investigated. This,
in turn, was an expansion of the specific example thoroughly studied in Mitra et al. [10], where utility was assumed to be
logarithmic.

Here, the general setting of Brock and Mirman [3] is considered (see also [9]): both the utility function and the pro-
duction function are any increasing concave twice differentiable functions satisfying the standard assumptions of neo-
classical discounted optimal growth models. Two specifications of the model are considered: the case in which the
random shocks affect production multiplicatively, and the case in which random shocks are additive. The assumption
of a discrete random variable taking one of two values to describe the uncertainty of the model is maintained as in [11].
In such a setting, suitable sufficient conditions on the parameters of the model under which the invariant distribution is
supported on a generalized Cantor set are established.

The paper is organized in two main parts. In the first part, after finding a lower bound for the largest fixed point of
the lower map of the Iterated Function System (IFS) generated by the optimal policy, we establish a sufficient condition
for the crucial no overlap property of the IFS, which in turn is a necessary condition to obtain an attractor of the IFS,
that is a stable invariant set of the stochastic process of optimal output, with the features of a generalized topological
Cantor set.
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In the second part we study topological properties of the attractor of the IFS describing the optimal dynamics. We
first define the generalized topological Cantor set (a set which is totally disconnected and contains no isolated points) as
the attractor of an IFS with nonlinear maps, as opposed to the well known linear ‘‘middle-a’’ Cantor set obtained as the
limit of iterations of linear maps. Then, we use the general theory of IFS to establish that whenever the no overlap prop-
erty holds and the maps of the IFS are strictly monotone and contractive, the attractor of the IFS is a generalized topo-
logical Cantor set. This result applies directly to the findings of the first part of the paper, thus yielding ranges for the
values of the parameters of our stochastic one-sector growth model such that its invariant distribution is supported on a
generalized topological Cantor set, provided that the maps of the IFS are contractions.

A section of the second part is devoted to construct counter examples that test robustness of the main result. We
focus on the essential role played by strict monotonicity: whenever it is relaxed, while the no overlap property is kept
in place and the maps are contractions, it becomes straightforward to construct attractors which contain isolated points
or non-trivial intervals, and thus cannot be topological Cantor sets.

The outline of the paper is as follows. Section 2 contains a description and basic properties of the model with the
assumptions that hold throughout all the subsequent sections. Section 3 is concerned with the no overlap property of
the maps constituting the optimal IFS: sufficient conditions for the no overlap property in terms of the parameters of
the model are established, both for the multiplicative shocks and for the additive shocks cases. In Section 4 the notion of
topological Cantor set is discussed and the main result, establishing conditions under which such a set is the attractor of
the IFS describing the optimal dynamics of our growth model, is presented. Some examples of attractors which are not
of the Cantor type are illustrated in Section 4.3. Finally, Section 5 reports some concluding remarks. All proofs are
gathered in the Appendix A.
2. Preliminaries

We consider the standard model of optimal growth under uncertainty as presented in [3,9]: the production function
f(x, r) depends on the amount of capital x employed and on some exogenous shock r which is a random variable taking
one of two values, i.e., r 2 {r0, r1}, r0 < r1, where r0 occurs with probability p 2 (0,1) and r1 with probability 1 � p, inde-
pendently through time. We shall study two specifications of the production function: one with multiplicative shocks
and one with additive shocks. So, there is a function, h : Rþ ! Rþ, such that f(x, r) = rh(x) in the first case and
f(x, r) = h(x) + r in the second, for ðx; rÞ 2 Rþ � fr0; r1g. Both the production function, h, and the utility function, u,
are continuous on Rþ, and are C2 functions on Rþþ satisfying the following standard assumptions:
hð0Þ ¼ 0; h0ð�Þ > 0; h00ð�Þ < 0; lim
x!0þ

h0ðxÞ ¼ þ1; lim
x!þ1

h0ðxÞ ¼ 0; ð1Þ

u0ð�Þ > 0; u00ð�Þ < 0; lim
x!0þ

u0ðxÞ ¼ þ1. ð2Þ
Under (1), there is a unique number k > 0 such that h(k) = k, h(x) > k for all 0 6 x < k and h(x) < k for all x > k. Thus,
a closed interval of the form ½0; kr1

� can be taken as the state space for our model. Thus, the ‘‘primitives’’ of our model
are the functions h and u, the values r0, r1, the probability p and the discount factor d 2 (0,1).

One can apply the standard theory of stochastic dynamic programming to obtain an (optimal) value function,
V : Rþ ! Rþ and two (optimal) policy functions, g : Rþ ! Rþ and c : Rþ ! Rþ, which we will interpret as the con-
sumption and the investment functions respectively. That is, given any output level, y P 0, the optimal consumption
out of this output is given by g(y), while the optimal input choice (for production in the next period) is then
c(y) = y � g(y). In both specifications for the exogenous shocks (multiplicative and additive), we denote f(c(y), r0) by
G0(y), which gives the output obtained in the next period when r takes the value r0, and f(c(y), r1) by G1(y), which gives
the output obtained in the next period when r takes the value r1. The inverse of h 0 will play an important role in our
analysis, and will be denoted by F.

Following [3,9], one can establish several useful properties of the value and policy functions. We summarize these
results (without proofs) in the following Proposition, where we denote (of/ox)(x, r) by fx(x, r).

Proposition 1. The value function, V, and the policy function, g, satisfy the following properties:

(i) V is concave on Rþ, and continuous on Rþþ;

(ii) g is continuous on Rþ and 0 < g(y) < y for y > 0;

(iii) g(y) and c(y) are both strictly increasing in y on Rþ;

(iv) for y > 0, we have
u0ðgðyÞÞ ¼ dfpu0ðgðG0ðyÞÞÞfxðcðyÞ; r0Þ þ ð1� pÞu0ðgðG1ðyÞÞÞfxðcðyÞ; r1Þg. ð3Þ
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The optimal policy function leads to the stochastic process:
1 Fo
ytþ1 ¼
G0ðytÞ with probability p

G1ðytÞ with probability 1� p

(
for t P 0. ð4Þ
Alternately, one might say that the optimal policy function leads to an iterated function system (IFS) {G0,G1;p, 1 � p}.
It is known (from [3]), that there is a unique invariant distribution, l, of the Markov process described by (4), and the
distribution of optimal output at date t, call it lt, converges weakly to l.1 We are principally interested in the geometric
properties of the support of l.

It can be checked that the functions G0 and G1 have positive fixed points, and all the fixed points are less than
kr1

. Denote by a the largest fixed point of G0, and by b the smallest fixed point of G1. Following [3], one can establish
that a < b. The interval [a,b] is an invariant stable set of the stochastic process (4). In particular, the support of l is
contained in [a,b]. Consequently, in studying the support of l, it is enough to concentrate on the stochastic process
(4), with initial output, y 2 [a,b]. Equivalently, one need only study the IFS {G0,G1;p, 1 � p} on the state space
X = [a,b].
3. The no overlap property

Let us examine some elementary features of the IFS {G0,G1;p, 1 � p} on the state space X = [a,b]. First, we look at
the function G0. We have G0(a) = a; and, for y 2 (a,b], we have G0(y) < y, so the graph of the map lies below the 450 line
(except at a). Further G0(y) increases with y, reaching G0(b) < G1(b) = b at y = b. Next, we look at the function G1.
Clearly, G1(a) > G0(a) = a; and for all y 2 [a,b), we must have G1(y) > y, so the graph of the map lies above the 450 line
(except at b). Further, G1(y) increases with y, reaching G1(b) = b at y = b.

We say that the two maps G0 and G1 do not overlap if:
G0ðbÞ < G1ðaÞ ð5Þ
so that the maximum of the G0 function is less than the minimum of the G1 function on the state space X = [a,b].
We want to find conditions on the primitives of the model, specifically, p, d, r0, r1, which ensure the no overlap prop-

erty (5). We shall obtain similar conditions for the two cases – multiplicative shocks and additive shocks—which are
treated separately.

3.1. Multiplicative shocks

Let the production function have the form f(x, r) = rh(x), with h satisfying (1), and let the set of values of the
random variable r be {r0, r1} = {q, 1}, where q 2 (0,1). We interpret the value 1 of r to be the ‘‘normal’’ state, with q

representing a downward production shock, occurring with probability p 2 (0,1). Therefore, we can re-label the fixed
point of h as the number kr1

¼ k such that h(k) = k. The two maps of the IFS are in this case G0(y) = qh(c(y)) and
G1(y) = h(c(y)).

We start by establishing a lower bound for the fixed point a of the (lower) map G0 which depends on the parameters
of the model. Recall that F denotes the inverse of h 0.

Lemma 1. The following inequalities hold true:
cðaÞ > F
1

dpq

� �
ð6Þ
and
a > qh F
1

dpq

� �� �
. ð7Þ
The proof is reported in Appendix A.
r an alternate and simpler approach to this result, see [2].
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Remark 1

(i) It is immediately seen that Lemma 1 holds under more general assumptions on the stochastic shocks. In partic-
ular, it holds under the assumptions of Lemmas 3.1 and 3.2 in [3]; that is, for any random variable r on some
interval [r0, r1], with r0 > 0, provided that Pr(r0) > 0. Moreover it holds for any production function f(x, r) with
random shocks that not necessarily enter multiplicatively, but such that f(x, Æ) is non-decreasing and f(Æ, r) satisfies
conditions similar to (1).

(ii) If, for example, h(x) has the Cobb–Douglas form, that is, h(x) = x1�a/(1 � a) for x P 0, where a 2 (0,1), then
conditions (6) and (7) become c(a) > [1/(dpq)]�1/a and a > [q1/a(dp)1/a�1]/(1 � a) respectively.

It is convenient to label the lower bound in (7) as follows:
hm ¼ qh F
1

dpq

� �� �
. ð8Þ
Note that our proof of Lemma 1 shows that hm constitutes a lower bound for all fixed points of G0; specifically, a > hm.
Lemma 1 is useful in constructing a sufficient condition for the no overlap property (5) by means of the parameters

of the model.

Proposition 2. Suppose the following condition is satisfied:
hm

k
P q2; ð9Þ
where k is such that k = h(k) and hm is defined in (8). Then the IFS {G0,G1;p,1 � p} on the state space X = [a,b] has the

no overlap property (5).

The proof is reported in Appendix A.

Remark 2

(i) Note that the no overlap property as stated in (9) does not depend on the utility function u.
(ii) If h(x) has the Cobb–Douglas form, that is, h(x) = x1�a/(1 � a) for x P 0, where a 2 (0,1), then condition (9)

becomes
ðdpqÞ1�a
> ½ð1� aÞkq�a. ð10Þ
Since h(k) = k, we have k1�a/(1 � a) = k, that is, (1 � a)�1 = ka. By using this in (10) we easily obtain condition (5) in [11]:
q2a�1 < ½dpð1� aÞ�1�a.
3.2. Additive shocks

We turn our attention now to a production function which has the form f(x, r) = h(x) + r, with h satisfying (1); more-
over, let the set of values of the random variable r be {r0, r1} = {0,q}, where q > 0. We may interpret the value 0 of r to
be the ‘‘normal’’ state, while q represents some positive production shock, occurring with probability 1 � p. The two
maps of the IFS are in this case G0(y) = h(c(y)) and G1(y) = G0(y) + q. Let �k be the unique fixed point of the map
s(x) = h(x) + q, so that we have hð�kÞ þ q ¼ �k. Then, we can set kr1

¼ �k. Note that �k > k þ q, where k is the unique po-
sitive fixed point of h. It is also straightforward to show (e.g., by implicit differentiation using condition (1)) that �k in-
creases as q increases.

A lower bound for the fixed point a of the (lower) map G0 in this case is defined by the following lemma.

Lemma 2. The following inequalities hold true:
cðaÞ > F
1

dp

� �
ð11Þ
and
a > h F
1

dp

� �� �
. ð12Þ
The proof is reported in Appendix A.
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Remark 3. Unlike the case where shocks enter production multiplicatively, when the exogenous shock is additive the
lower bound for the fixed point a of the (lower) map G0 does not depend on the shock q itself.

Let us label the lower bound in (7) as follows:
ha ¼ h F
1

dp

� �� �
ð13Þ
and state a sufficient condition for the no overlap property (5) to hold for the additive shocks case.

Proposition 3. Suppose the following condition is satisfied:
ha P 2hð�kÞ � �k; ð14Þ
where �k is such that �k ¼ hð�kÞ þ q and ha is defined in (13). Then the IFS {G0,G1;p,1 � p} on the state space X = [a,b] has

the no overlap property (5).

The proof is reported in Appendix A.

Remark 4

(i) Again the no overlap property as stated in (14) does not depend on the utility function u.
(ii) The case where production is affected by an additive shock allows for a more striking interpretation than the pre-

vious case with multiplicative shocks. The left term in (14) does not depend on q, while the right term does, since �k
is a strictly increasing function of q; but, under assumption (1), the right term in (14) diverges to �1 as �k ! þ1.
Therefore, condition (14), and thus the no overlap property (5), holds whenever the shock q is large enough. Note
that condition (9) does not allow for a similar interpretation as in that case also the lower bound hm does depend
on q.
4. Topological structure of the attractor of a IFS

In the previous sections we provided enough information on the IFS {G0,G1;p, 1 � p} defined on the space X = [a,b]
so that the standard theory of IFS can be applied (see, e.g., [8,1,4,5]). In view of the examples of Section 4.3, we
slightly generalize the setting by considering any pair of continuous maps H0 and H1 defined on some compact subset
X of the real line; that is, we shall study a generic IFS {H0,H1;p, 1 � p}, abstracting from the maps G0 and G1 discussed
so far.

4.1. A well known result on IFS

Let X � R be a compact set. Let BðX Þ denote the sigma-algebra of Borel measurable subsets of X and PðX Þ the
space of probability measures on BðX Þ. Recall that the Barnsley operator S :X! X is defined by
SðEÞ ¼ H 0ðEÞ [ H 1ðEÞ for E � X ð15Þ
and the Markov operator M : PðX Þ ! PðX Þ is defined by
MlðBÞ ¼ plðH�1
0 ðBÞÞ þ ð1� pÞlðH�1

1 ðBÞÞ for l 2 PðX Þ; and B 2 BðX Þ;
where H�1
0 ðBÞ and H�1

1 ðBÞ denote the counter-image sets of the set B through the maps H0 and H1 respectively. Oper-
ator M describes the evolution of probabilities under the stochastic process
ytþ1 ¼ H zt ðytÞ; ð16Þ
where zt are i.i.d. over {0,1} with distribution {p ,1 � p} for all t P 0. We shall denote the iterates of such operators by
St(E) = S(St�1(E)) and Mt(l) = M(Mt�1(l)( )) for all t P 1, with S0(E) = E and M0(l) = l.

Recall that the Hausdorff distance dH is defined over the class of all non-empty compact sets in X, KðX Þ, by
dHðA;BÞ ¼ inffd : A � Bd and B � Adg for A;B 2KðX Þ; ð17Þ
where Ad and Bd denote the d-neighborhoods (d-parallel bodies) of the sets A and B respectively, that is,
Ad ¼ fx 2 X : jx� aj < d for some a 2 Ag
is the set of points within distance d of A. See, e.g., [4,5] for more details.
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In the next proposition are reported (without proof) the main results regarding the attractor and the unique invari-
ant distribution of the IFS {H0,H1;p, 1 � p} on the space X � R induced by the stochastic process (16) when the maps
H0 and H1 are contractions.

Proposition 4. If constants ‘i exist such that 0 < ‘i < 1 and jHi(y) � Hi(z)j 6 ‘ijy � zj for all y, z 2 X, i = 0,1, then the IFS

{H0,H1;p,1 � p} satisfies the following properties:

(i) there is a unique (invariant) compact set A* � X such that S(A*) = H0(A*) [ H1(A*) = A*,

(ii) for any compact set A0 such that S(A0) � A0, denoting At = St(A0) for t P 1, we have A0 � A1 � A2 � � � � � A*,

(iii) A* is the support of the unique (invariant) probability distribution, l	 2 PðX Þ, satisfying
l	ðBÞ ¼ pl	ðH�1
0 ðBÞÞ þ ð1� pÞl	ðH�1

1 ðBÞÞ for all B 2 BðX Þ;
(iv) for l 2 PðX Þ, denoting lt = Mt(l) for t P 1, lt converges weakly to l*.
Proposition 4(ii) states that the iterates of the Barnsley operator, St, converge in the Hausdorff distance to the unique
set A*, and that convergence is monotonically decreasing whenever the starting set A0 is sufficiently large to contain the
union of the images of itself through the maps H0, H1 :H0(A0) [ H1(A0) � A0. Often, a suitable starting set A0 to con-
struct a decreasing sequence converging to A* is the space X itself.

We shall call A* the attractor of the IFS {H0,H1;p, 1 � p} on the space X. For the IFS {G0,G1;p, 1 � p} A* is thus the
support of the invariant distribution l* to which the one-sector growth model discussed in the previous sections con-
verges asymptotically.

4.2. Generalized Cantor type attractors

It is well known that if X = [0,1] and the maps H0 and H1 of the IFS are linear with slope m, 0 < m < 1/2, the attrac-
tor A* of the IFS is a ‘‘middle-a’’ Cantor set, where a = 1 � 2m. This set is obtained by removing the open middle inter-
val of length 0 < a < 1 from [0,1] at the first step, then removing the open middle a-proportion from the two disjoint
closed intervals remaining after the first step, and continuing the process by removing at each step t the open middle a-
proportion from all the 2t disjoint closed intervals remaining after step t � 1, as t! +1 (see [10] for a thorough dis-
cussion of this example).

The maps of the IFS {G0,G1;p, 1 � p} characterizing the model discussed in the previous sections are clearly non-
linear. The natural question that arises is thus under what conditions such IFS has an attractor that resembles the typ-
ical features of a nonlinear Cantor type set. The answer to this question is not obvious as long as nonlinear maps are
involved, as it will be illustrated by the examples in Section 4.3.

First we need to make clear what are the main features characterizing a nonlinear Cantor type set. We shall adopt a
sufficiently general definition of Cantor set based on topological properties. Recall that a set E � X, where (X,d) is a
metric space, is said to be totally disconnected if its only connected subsets are one-point sets, that is, for any two distinct
points x, y in E, there are two non-empty open disjoint sets U and V such that x 2 U, y 2 V and (U \ E) [ (V \ E) = E;
also, a set E � X is said to be perfect if it is equal to the set of its accumulation points, that is, it is a closed set which
contains no isolated points.

Definition 1. We shall say that a set C � R is a generalized (topological) Cantor set on the real line if it is totally

disconnected and perfect.

This definition is fully justified, e.g., in view of Chapter 2 in [7], where it is established that any compact metric space
that is totally disconnected and perfect is homeomorphic to the classical ‘‘middle-third’’ Cantor set.

Our objective now is to obtain a set of sufficient conditions on the iterated function system {H0,H1;p, 1 � p} under
which the IFS has a unique attractor which is a generalized (topological) Cantor set. This result (stated in Theorem 3
below) can be obtained from the mathematical literature on iterated function systems, and our discussion should be
viewed as primarily expository. However, we should note that Theorem 3 is stated in a particularly convenient form
for applications (as is clear from our application of it to the optimal growth context in Corollary 1), and the self-con-
tained proof of it (given in Appendix A) is both simple and instructive. The literature on IFS is rather large, but we have
not seen a result, exactly in the form of Theorem 3, stated and proved in this literature.

In the economics literature, the attractor of the IFS, generated by the optimal growth model, represents the support
of the outputs in a stochastic steady state. Thus, it is important to understand the nature of this attractor. The study of
this topic is relatively new, although the existence, uniqueness and stability of the stochastic steady state have been
discussed extensively in the literature on optimal growth under uncertainty. A Cantor like attractor is particularly
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interesting because it suggests that the invariant distribution may have its support on a rather sparse set, while many
ranges of intermediate output levels would (almost) never be observed.

Let diam(E) = sup{jy � zj :y,z 2 E} denote the diameter of a set E � X. Recall that the closure of a set E � X, de-
noted by E, is the set containing all accumulation points of E, that is, points that are the limit of some sequence of
points in E. We shall denote the composition of maps f0 :X! Y and f1 :Y! Z by a function f0 
 f1 :X! Z defined
as (f0 
 f1)(x) = f0(f1(x)); this notation extends to the composition of any finite number of maps in the obvious way.
For any t P 0 let us denote a t-sequence of 0s and 1s by it = (i0, i1, . . . , it), where ik 2 {0,1} for k = 0, . . . , t, and by
Rt the set of all such sequences: Rt = {(i0 ,i1, . . . , it) : ik 2 {0,1}, k = 0, . . . , t}. Similarly, let i1 = (i0, i1, . . .) denote an infi-
nite sequence of 0s and 1s, and R = {(i0, i1, . . .) : it 2 {0,1}, t P 0} denote the set of all such sequences. With this notation
at hand, we can use the shorthand
2 No
H it ¼ H i0 
 H i1 
 � � � 
 H it
to denote the composition of the t + 1 maps H i0 ;H i1 ; . . . ;H it for a specific sequence of 0s and 1s it = (i0, i1, . . . , it) 2 Rt.
We shall now see that the set R constitutes the natural environment for codifying each element in the attractor A*

(see Chapter IV in [1] for a more exhaustive treatment). Take any compact set K � X such that S(K) � K; then, by Prop-
osition 4(ii), A	 ¼ \1t¼0StðKÞ. On the other hand, by definition of operator S, StðKÞ ¼ [it2Rt H it ðKÞ, and thus
A	 ¼
\1
t¼0

[
it2Rt

H it ðKÞ. ð18Þ
Note that, since A* is unique, the right hand side in (18) must be independent of K. By definition of operator S and by
Proposition 4(ii), H it ðKÞ � H itþ1

ðKÞ for all it 2 Rt and it+1 2 Rt+1, hence H it ðKÞ is a decreasing sequence and has a limit
as t!1. Let ‘ = max{‘0, ‘1}, then for all t P 0 and for all it 2 Rt, it+1 2 Rt+1, diamðH itþ1

ðKÞÞ 6 ‘diamðH it ðKÞÞ <
diamðH it ðKÞÞ, and thus the diameter of all sets H it ðKÞ vanishes as t!1; since the sets H it ðKÞ are compact for all
t P 0, the limit of the sequence H it ðKÞ must consist of a single point:
y ¼
\1
t¼0

H it ðKÞ 2 A	;
which again must be independent of K. Through this construction we can define a map
P : R! A	 ð19Þ
associating with each element of the set R (that is, each sequence of 0s and 1s i1 = (i0, i1, . . .)), some point of the attrac-
tor A*.

Theorem 1 reports some useful properties of the map (19). For this purpose, we need to introduce a distance q for
the set R so that we can work on a metric space. For any pair of sequences i1, j1 2 R, let
qði1; j1Þ ¼ ‘i0‘i1 � � � ‘iu ; ð20Þ
where ik 2 {0,1} for k = 0, . . . ,u, and u = max{t : it = jt} is the largest t such that the first t elements in the sequences i1
and j1 coincide. If we agree to set q(i1, j1) = 1 when i0 5 j0 and q(i1, j1) = 0 if i1 = j1, then it can be easily shown
that q satisfies the properties of a distance. The metric space (R,q) is often called coding space.

Finally, we generalize property (5) discussed in Section 3 by saying that the maps Hi :X! X, i = 0,1, have the no
overlap property2 if
max
x2X

H 0ðxÞ < min
x2X

H 1ðxÞ. ð21Þ
Theorem 1. The map P :R! A* defined by
y ¼ Pði1Þ ¼
\1
t¼0

H it ðKÞ
for some compact set K � X such that S(K) � K, satisfies the following properties:
te that the no overlap condition (21) in this context is equivalent to the strong separation condition defined on p. 35 in [4].
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(i) it is independent of the set K and is onto,

(ii) it is Lipschitz with respect to the distance defined in (20), with Lipschitz constant given by diam(A*), that is,
jPði1Þ �Pðj1Þj 6 diamðA	Þqði1; j1Þ for all i1; j1 2 R;
and hence P is continuous,

(iii) if the maps Hi, i = 0,1, are injections and the no overlap property (21) holds, then P is bijective.
Theorem 1 is well known in the literature on fractals; for a full treatment, a good reference is Chapter IV in [1].
Note that, since H ik are contractions for all ik 2 {0,1} and k = 0, . . . , t, H ik is also a contraction, and therefore it has a

unique fixed point, which will be denoted by fixðH it Þ. The following theorem is due to Williams [13].

Theorem 2. The unique attractor A* of the IFS {H0,H1;p,1 � p} is the closure of the set of fixed points of arbitrary finite

compositions H it , for all t P 0, namely,
A	 ¼
[1
t¼0

[
it2Rt

fixðH it Þ.
See [13] or [8] for general proofs.

Theorem 3. Suppose that the maps Hi :X! X, i = 0,1, are strictly monotone on some closed interval X = [a,b] and

constants ‘i exist such that 0 < ‘i < 1 and jHi(y) � Hi(z)j 6 ‘ijy � zj for all y, z 2 X and i = 0,1, moreover assume that the

no overlap property (21) holds. Then the unique attractor A* of the IFS {H0,H1;p,1 � p} is totally disconnected and

perfect, and therefore it is a generalized (topological) Cantor set.

A self-contained proof is reported in Appendix A. For a generalization of Theorem 3, see Theorem 3.4 in [6].
The following section contains examples illustrating the role of the assumptions in Theorem 3. All three main

assumptions, no overlap, contractivity and strict monotonicity of the maps His, seem to be essential. Clearly, the role
of no overlap is needed to have ‘‘holes’’ spreading during iterations of operator St, a necessary requirement for the
attractor to be a Cantor type set. The role of the other two assumptions appears more subtle. Contractivity, besides
assuring existence and uniqueness of the attractor A* as stated in Proposition 4, causes the diameter of the components
of each pre-fractal to shrink fast enough so that enough space for the new appearing holes to survive is left after iterates
of operator St. Strict monotonicity prevents such components to shrink too fast so that the attractor can have neither
isolated points nor components which can remain connected.

We conclude this section by applying Theorem 3 to the one-sector growth model discussed in Sections 2 and 3. Note
that strict monotonicity of the optimal policy postulated by Proposition 1(iii) implies that the maps G0 and G1 of the
IFS describing the evolution of optimal output levels through time must be always strictly increasing; thus the only con-
ditions required for the attractor of the model to be a Cantor set are the no overlap property, discussed in Section 3, and
contractivity of the maps G0 and G1.

Corollary 1. Assume that the maps G0 and G1 satisfy the no overlap property (5)—i.e., either condition (9) for the

multiplicative shocks case, or condition (14) for the additive shocks case—and that constants ‘i exist such that 0 < ‘i < 1

and jGi(y) � Gi(z)j 6 ‘ijy � zj for all y, z 2 X and i = 0,1. Then the attractor A* of the IFS {G0,G1;p,1 � p} associated to

the stochastic process (4) is a generalized (topological) Cantor set.

The goal of establishing sufficient conditions (on the primitives of the one-sector optimal growth model) for the
maps G0 and G1 to be contractions directly in terms of the parameter of the growth model is the topic of a companion
paper under preparation.
4.3. Examples

The aim of this section is to stress the role of strict monotonicity in Theorem 3. The following examples show that
when strict monotonicity is relaxed, the conclusion of Theorem 3 no longer holds. Indeed, under such relaxation, we are
able to construct examples of attractors which are either purely isolated points or the union of non-trivial intervals, even
while the other assumptions, no overlap and contractivity, are kept in place. Note that in all examples we assume that
the maps His are non-decreasing, that is, only strict monotonicity (or, more generally, injectiveness), as required by The-
orem 3, is dropped. We shall use C2 maps in order to dispel any doubt that we might be looking for pathological cases.
Moreover, if the maps His are C2, it is well known that the IFS {H0,H1;p, 1 � p} can be obtained as the solution of
some concave stochastic dynamic programming problem (see [12]).
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We shall assume that H0 and H1 are contractions on some interval X = [a,b], that is, constants ‘i exist such that
0 < ‘i < 1 and jHi(y) � Hi(z)j 6 ‘ijy � zj for all y,z 2 X and i = 0,1, and that H0 and H1 are only non-decreasing, that
is, Hi(y1) 6 Hi(y2) whenever y1 6 y2 for i = 0,1. The last assumption allows us to restate the no overlap property, con-
dition (21), as follows:
H 0ðbÞ < H 1ðaÞ;
which will be assumed in all examples.
We start with an extreme example producing a trivial attractor of purely isolated points, followed by a non trivial

example again exhibiting an attractor of purely isolated points.

Example 1. Consider the following maps defined on some interval [a,b]:
H 0ðyÞ � a; H 1ðyÞ � b.
These maps are clearly C2 and non-decreasing on X = [a,b]. H0(b) = a < b = H1(a) and thus there is no overlap and also
contractivity is trivially satisfied. As it can be seen in Fig. 1(a), the attractor of the IFS {H0,H1;p, 1 � p} on X = [a,b] is
A* = {a,b}, which is a set of two isolated points and, clearly, it is not of the Cantor type, as is totally disconnected but
not perfect. The set A* is invariant for the IFS and is produced after the first iteration of the stochastic process (16).

Example 2. Consider the following maps:
H 0ðyÞ ¼

0 for 0 6 y 6 1=4;

ð72=5Þy3 � ð54=5Þy2 þ ð27=10Þy � 9=40 for 1=4 6 y 6 1=3;

�ð36=5Þy3 þ ð54=5Þy2 � ð9=2Þy þ 23=40 for 1=3 6 y 6 2=3;

ð72=5Þy3 � ð162=5Þy2 þ ð243=10Þy � 233=40 for 2=3 6 y 6 3=4;

1=4 for 3=4 6 y 6 1;

8>>>>>><
>>>>>>:

H 1ðyÞ ¼

3=4 for 0 6 y 6 1=4;

ð72=5Þy3 � ð54=5Þy2 þ ð27=10Þy þ 21=40 for 1=4 6 y 6 1=3;

�ð36=5Þy3 þ ð54=5Þy2 � ð9=2Þy þ 53=40 for 1=3 6 y 6 2=3;

ð72=5Þy3 � ð162=5Þy2 þ ð243=10Þy � 203=40 for 2=3 6 y 6 3=4;

1 for 3=4 6 y 6 1.

8>>>>>><
>>>>>>:
It can be shown that these piecewise maps are C2 and non-decreasing on X = [0,1]. H0(1) = 1/4 < 3/4 = H1(0) and thus
there is no overlap. Contractivity can be easily checked by computing derivatives on y = 1/2, which is the point where
both maps are steepest:
H 00ð1=2Þ ¼ H 01ð1=2Þ ¼ 9=10 < 1
and thus they are both contractions. As it can be seen in Fig. 1(b), the attractor of the IFS {H0,H1;p, 1 � p} on
X = [0,1] is A* = {0,1/4,3/4,1}, which is a set of four isolated points and, clearly, it is not of the Cantor type, as is
a

b

b
yt

yt+1

H0

H1

0

1/4

3/4

1

1/4 3/4 1
yt

yt+1

H0

H1

(a) (b)

Fig. 1. (a) H0 and H1 as in Example 1; (b) H0 and H1 as in Example 2.
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totally disconnected but not perfect. The set A* is invariant for the IFS and is produced just after two iterations of the
stochastic process (16).

The next example shows how it is possible to construct an IFS with an attractor which is the union of two non-trivial
intervals. Such an attractor is definitely a perfect set, but it is not totally disconnected.

Example 3. Consider the following maps:
H 0ðyÞ ¼

ð225=8Þy3 for 0 6 y 6 1=9;

�ð75=4Þy3 þ ð75=8Þy2 � ð5=8Þy þ 1=72 for 1=15 6 y 6 4=15;

ð225=8Þy3 � ð225=8Þy2 þ ð75=8Þy � 7=8 for 4=15 6 y 6 1=3;

1=6 for 1=3 6 y 6 2=3;

ð225=8Þy3 � ð225=8Þy2 þ ð75=2Þy � 49=6 for 2=3 6 y 6 11=15;

�ð75=4Þy3 þ ð375=8Þy2 � ð305=8Þy þ 743=72 for 11=15 6 y 6 14=15;

ð225=8Þy3 � ð675=8Þy2 þ ð675=8Þy � 667=24 for 14=15 6 y 6 1;

8>>>>>>>>>>><
>>>>>>>>>>>:

H 1ðyÞ ¼

ð225=8Þy3 þ 2=3 for 0 6 y 6 1=9;

�ð75=4Þy3 þ ð75=8Þy2 � ð5=8Þy þ 49=72 for 1=15 6 y 6 4=15;

ð225=8Þy3 � ð225=8Þy2 þ ð75=8Þy � 5=24 for 4=15 6 y 6 1=3;

1=6 for 1=3 6 y 6 2=3;

ð225=8Þy3 � ð225=8Þy2 þ ð75=2Þy � 15=2 for 2=3 6 y 6 11=15;

�ð75=4Þy3 þ ð375=8Þy2 � ð305=8Þy þ 791=72 for 11=15 6 y 6 14=15;

ð225=8Þy3 � ð675=8Þy2 þ ð675=8Þy � 217=8 for 14=15 6 y 6 1.

8>>>>>>>>>>><
>>>>>>>>>>>:
It can be checked that these piecewise maps are C2 and non-decreasing on X = [0,1]. H0(1) = 1/3 < 2/3 = H1(0) and
thus there is no overlap. They are contractions, as their derivatives are bounded by their values on y = 1/6:
H 00ð1=6Þ ¼ H 01ð1=6Þ ¼ 15=16 < 1.
Fig. 2 shows that the attractor of the IFS {H0,H1;p, 1 � p} on X = [0,1] is A* = [0,1/3] [ [2/3,1], that is, the disjoint
union of two closed non-empty intervals. This is not a Cantor type set, as it is perfect but not totally disconnected.
The set A* is invariant for the IFS and is produced just after the first iteration of the stochastic process (16).

These examples show how attractors which are not of the Cantor type can be constructed by relaxing strict mono-
tonicity of the maps His: the trick to obtain an attractor of purely isolated points versus an attractor which is the union
of closed non-empty intervals is to choose maps which are flat in some appropriate subset of the interval X = [a,b].

Remark 5. It is important to stress that attractors of the kind described in the previous examples, which are not of the
Cantor type, are ruled out in the one-sector optimal growth model of Section 2 by Corollary 1. In other words, the main
finding of the present work is that whenever the no overlap property holds and the maps representing the optimal policy
0

1/3

2/3

1

1/3 2/3 1
yt

yt+1

H0

H1

Fig. 2. H0 and H1 as in Example 3.
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are contractions the attractor of the stochastic one-sector growth model is necessarily a generalized Cantor set (since the
optimal policy generates an IFS with strictly increasing maps).
5. Concluding remarks

The main results of this work, Theorem 3 and Corollary 1, provide sufficient conditions on the stochastic one-sector
growth model described in Section 2 so that the invariant probability distribution to which the model converges in the
long run is supported on a topological Cantor set. Proposition 1(iii) and Propositions 2 and 3, provide conditions on the
parameters of the model for two of the three sufficient conditions of Theorem 3 to hold: monotonicity and no overlap
property. If, in addition, the maps of the iterated function system (4) are contractions, then Corollary 1 holds. The
problem of finding conditions in terms of the parameters of the model, such that the maps describing the optimal policy
turn out to be contractions (thus filling the gap left out by the last condition needed to apply Theorem 3), is addressed in
ongoing research by the authors, to be reported at a future date.
Appendix A

Proof of Lemma 1. Clearly, (7) follows immediately from (6) by strict monotonicity of h and since a is a fixed point for
G0, that is, a = G0(a) = qh(c(a)).

To prove (6), take any fixed point �y for the map G0, �y ¼ G0ð�yÞ. We calculate the stochastic Ramsey–Euler equation
(3) (Proposition 1(iv)) at y ¼ �y:
u0ðgð�yÞÞ ¼ dfpu0ðgðG0ð�yÞÞÞqh0ðcð�yÞÞ þ ð1� pÞu0ðgðG1ð�yÞÞÞh0ðcð�yÞÞg > dpu0ðgðG0ð�yÞÞÞqh0ðcð�yÞÞ
¼ dpu0ðgð�yÞÞqh0ðcð�yÞÞ;
where the last equality holds since �y ¼ G0ð�yÞ. Thus, we have
1

dpq
> h0ðcð�yÞÞ.
By applying the decreasing function, F, to both sides we get
F
1

dpq

� �
< cð�yÞ
and since �y is an arbitrary fixed point for the map G0, inequality (6) is established. h

Proof of Proposition 2. Since G1(a) = (a/q) and G0(b) = qG1(b) = qb, the no overlap condition (5) is equivalent to
qb <
a
q

. ð22Þ
As b 6 k, a sufficient condition for (22) to hold is qk < a/q, which, since a > hm, leads immediately to condition (9). h

Proof of Lemma 2. As in Proof of Lemma 1, (12) follows immediately from (11) by strict monotonicity of h and since a

is a fixed point for G0, that is, a = G0(a) = h(c(a)). For any fixed point �y of the map G0, �y ¼ G0ð�yÞ, through a similar use
of the stochastic Ramsey–Euler equation (3) as in Proof of Lemma 1, we easily obtain
1

dp
> h0ðcð�yÞÞ.
By applying the decreasing function, F, to both sides we get
F
1

dp

� �
< cð�yÞ
and since �y is an arbitrary fixed point for the map G0, inequality (11) is established. h

Proof of Proposition 3. Since G0(b) = G1(b) � q = b � q and G1(a) = a + q, the no overlap condition (5) is equivalent to
b� a < 2q. ð23Þ
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As b 6 �k and a > ha, a sufficient condition for (23) is �k � ha 6 2q, which, by substituting q ¼ �k � hð�kÞ, yields
(14). h

Proof of Theorem 3. Since S(X) � X, we can use Proposition 4(ii) to construct a monotonically decreasing sequence of
sets converging to A* in the Hausdorff distance starting from X = [a,b]: denoting At = St(X) for t P 0, we have
X = A0 � A1 � A2 � � � � � A*. The sets At are called pre-fractals, as they provide increasingly better estimations of
the attractor A* as t becomes larger. Note that, if the starting set is A0 = X = [a,b], all pre-fractals At are the union
of closed intervals, which are called components of the pre-fractal At. Clearly each component is a set of the type
H it ðX Þ for some sequence it 2 Rt. Since the maps Hi are strictly monotone—and thus they are injections—and the
no overlap property (21) holds, for all t P 0 the pre-fractal At is the union of 2t non-empty closed disjoint intervals:
At ¼ [it 2 RtH it ðX Þ with H it ðX Þ \ H jt ðX Þ ¼ ; for it 5 jt. Moreover Theorem 1(iii) applies and, for any two points
y,z 2 A* such that y 5 z, we can write y ¼ Pði1Þ ¼ \1t¼0H it ðX Þ and z ¼ Pðj1Þ ¼ \1t¼0H jt ðX Þ with i1, j1 2 R and
i15 j1. But this implies that there is 0 6 t <1 such that it 5 jt with y 2 H it ðX Þ and z 2 H jt ðX Þ. Since H it ðX Þ and
H jt ðX Þ are closed and disjoint, A* � At, and y,z are arbitrary, this is enough to establish that A* is totally disconnected.

To show that A* is also perfect we shall use Theorem 2. We must show that every point y 2 A* is the limit of some
sequence of (distinct) points in A*. Let y 2 A*; then, by Theorem 2, either (a) y ¼ fixðH it Þ for some it 2 Rt, t P 0, or (b)
it is the limit of some sequence of such points, y = limk!1yk where, for all k, yk ¼ fixðH it Þ for some it 2 Rt, t P 0. Let us
consider case (a) and assume that y ¼ fixðH it Þ for some it 2 Rt, t P 0; that is, y ¼ H it ðyÞ. Now choose i 2 {0,1} so that
z = fix(Hi) and z 5 y; since there are two distinct maps H0 and H1 in the IFS, such choice is always possible. Clearly, by
Theorem 2, z 2 A*. Define the sequence yk ¼ ðH it Þ

kðzÞ, where ðH it Þ
k ¼ H it 
 � � � 
 H it denotes the k-fold composition of

the map H it . As H it maps A* into itself and z 2 A*, yk 2 A* for all k. Since H it is a contraction and is strictly monotone,
so is ðH it Þ

k , and thus the sequence yk constructed so far converges to y and contains distinct elements in A* for all k;
hence y is an accumulation point of A*. As far as case (b) is considered, note that in this case yk 2 A* for all k; thus y

turns out to be an accumulation point of A* by definition, and the proof is complete. h
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